132
(p=3,4,6) are:
N5?=309 G3 +950 G5 +953 G$ =2212;

N22=1634 G1¥ +6361 G3* +7288 G =15283;
N5 =13391 G3*'+ 53664 G3* +78825 G3*

= 145880,

N22=150197 G3* +441924 G3* + 967568 G2
=1559689;

NZ=1888320 G +2056320 G5* + 10321920 G5*
= 14266560;

N2*=19998720 G3* = 19998720.

The possible physical applications of the general-
ized colored symmetry groups derived are considered
by Koptsik (1988).

Acta Cryst. (1993). A49, 132-137
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Abstract

The number of junior Mackay groups of M™ type is
calculated for different nonisomorphic antisymmetric
characteristics formed by 1=1/=<4 generators. Com-
binatorial relationships connecting Mackay and

Zamorzaev multiple-antisymmetry groups are estab-
lished.

The idea, originated by Speiser (1927) and realized
by Weber (1929), of representing symmetry groups
of bands by black-and-white plane diagrams was the
starting point for introducing antisymmetry (Heesch,
1929). The color change white-black used as the
possibility for the dimensional transition from the
symmetry groups of friezes G,, to the symmetry
groups of bands G;,, or from the plane groups G,
to the layer groups G,,, applied on Fedorov space
groups G; to derive the hyperlayer-symmetry groups
G,; (Heesch, 1930), was the beginning of the theory

0108-7673/93/010132-06$06.00

of antisymmetry. Its simple mathematical explanation
is the following: if G is a discrete symmetry group
with the anti-identity transformation e, satisfying the
relationship e,” = E and commuting with every sym-
metry S from G, the group G', consisting of transfor-
mations S' (S'=S or S'=e¢,S), is an antisymmetry
group. The antisymmetry group G' can be the gen-
erating (G, = G), the senior (G'=G x C,= G x{e,})
or the junior (G'= G) group. Every junior antisym-
metry group G' is uniquely defined by the generating
symmetry group G and its subgroup H of index 2,
the symmetry subgroup of G', i.e. by the symbol G/ H
(G/H = C,={e,}). The anti-identity transformation
e, can be interpreted as the change of any physical
or geometrical bivalent property [e.g. (+ =), (S N),
(convex concave) etc.] independent of the symmetry
group G. The development of the theory of antisym-
metry can be followed through the works of Shub-
nikov et al. (1964), Shubnikov & Koptsik (1974) and
Zamorzaev (1976).

© 1993 International Union of Crystallography
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Its natural generalization, multiple antisymmetry,
was suggested by Shubnikov (1945) and introduced
by Zamorzaev & Sokolov (1957). Three months later,
a different concept of multiple antisymmetry was
proposed by Mackay (1957). During the next 30 years,
mostly due to the contribution of the Kishinev school
(Zamorzaev, Palistrant, Galyarskii,...), the theory
of multiple antisymmetry became an integral part of
mathematical crystallography and acquired the status
of a complete theory extended to all categories of
isometric symmetry groups of the space E" (n=<3),
different kinds of nonisometric symmetry groups (of
similarity symmetry, conformal symmetry etc.) and
P-symmetry groups (Zamorzaev, 1976; Zamorzaev,
Galyarskii & Palistrant, 1978; Zamorzaev & Palis-
trant, 1980; Zamorzaev, Karpova, Lungu & Palistrant,

1986; Zamorzaev, 1988). On the other hand, investiga-'

tion of the Mackay approach to multiple antisym-
metry (Mackay, 1957; Nowacki, 1960; Wondratschek
& Niggli, 1961; Zamorzaev, 1976) was not continued.
~ Let G be a discrete symmetry groupand ¢, (1<i=<
I) be the anti-identities satisfying the relationships
e’=E, e;e; = ¢;e; and commuting with all elements of
G. The group consisting of transformations S’ =e’S,
where e’ is the identity, anti-identity or some product
of anti-identities, is called the multiple-antisymmetry
group. In this paper we will consider only the junior
multiple-antisymmetry groups of the M™ type, ie.
the multiple-antisymmetry groups isomorphic with
their generating symmetry group and possessing an
independent system of antisymmetries (Jablan, 1986).
Every junior multiple-antisymmetry group G’ of the
M type can be uniquely defined by the extended
group/subgroup symbol G/(H,, ..., H,,)/ H, where
G is the generating group, H; are its subgroups of
index 2 satisfying the relationships G/ H; = C, = {¢;}
(1=i=m) and H is the subgroup of G of index 2™,
the symmetry subgroup of G' (G/H =C," ={e,} x
.. x{en}).

To establish the equality of multiple-antisymmetry
groups, three different criteria can be used.

(1) The ‘strong’ equality criterion, according to
which the anti-identities e; are nonequivalent. Con-
sequently, in the symbol G/(H,,..., H,)/H, the
order of the subgroups H,, ..., H, isimportant. This
means that the bivalent changes e, are physically
different (nonequivalent) [e.g. (white black), (+ —),
(SN),(01)...1].

(2) The ‘medium’ equality criterion, where all e,
are treated as equivalent (ie. permutable), so the
order of the subgroups mentioned is not important.

(3) The ‘weak’ equality criterion, G/ H.

By use of the ‘strong’ equality criterion, we have
as a result Zamorzaev groups (Z groups); by use of
the ‘medium’ equality criterion, we obtain Mac-
kay (or compound) multiple-antisymmetry groups
(M groups). An illustration of the criteria mentioned
is given by the 2-multiple antisymmetry groups gener-
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ated from the symmetry group of friezes pmm2, where
e,=(01) and e, =(8).
ﬁll

m,
) ——
Ao Of 0 1818
7 % ’.. mx 7 7 7 mx Y
41164161161 o0 oo

(a) (b)

m

If the bivalent changes e, and e, are treated as
nonequivalent, we have ‘strong’ equality and three
different Z groups: (a) pmm2/(p112, pm11)/p111,
(b) pmm2/(pmil, p112)/pill, (c) pmm2/(p112,
plm1)/p111. If the bivalent changes are treated as
equivalent, we have ‘medium’ equality and two M
groups: (a)=(b) pmm2/(p112, pm11)/p1ll =
pmm2/(pm11,p112)/pl111, (c) pmm?2/(p112,
plml)/p111. According to the ‘weak’ equality
criterion, (a) =(b)=(c).

With the positional symbols (Koptsik, 1975),
the same 2-multiple antisymmetry groups can be
denoted as (a) pPmDMLI20.0 0 (p)
p(], l)m(l_ 1')m(l', l’)2(l', l), (C) p(l. l)m(l'. I')m(l', 1)2(1, l').
Permutation of anti-identities e,, e, and the induced
permutation of the subgroups H, =p112, H,=pm]11
results in the transformation (1,1)e(1,1), (1, 1) e
(1,19, (1,1 e (1, 1"), transforming the positional
symbol of group (a) into the symbol of group (b),
showing that groups (a) and (b) are different as Z
groups and equal as M groups.

A very efficient method for the derivation of Z
groups is the antisymmetric-characteristic method
(Jablan, 1986, 1987, 1990).

Definition 1: Let all products of generators of a
group G, within which every generator participates
once at the most, be formed and then subsets of
transformations that are equivalent in the sense of
symmetry with regard to the symmetry group G be
separated. The resulting system is called the antisym-
metric characteristic of the group G [AC(G)].

Theorem 1: Two Z groups G’ and G” of M™ type
for fixed m, with common generating group G, are
equal if and only if they possess equal AC.

Every AC(G) completely defines the series N,,(G),
where N, (G) denotes the number of Z groups of
M type derived from G for m fixed 1= m<1).

Theorem 2: Symmetry groups possessing isomor-
phic AC generate the same number of Z or M groups
of M™ type for each particular m (1= m = [); these
groups correspond with each other with regard to
structure.

Corollary: the derivation of all Z or M groups can
be completely reduced to the construction of all non-
isomorphic AC and derivation of the corresponding
groups of M™ type from these AC.

In the sense of Z groups, nonisomorphic antisym-
metry characteristics formed by 1=/=<4 generators
were investigated by Jablan (1990). They are listed
below.
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I=1

1.1 {A}.

1=2

2.1 {A}{B};
22 {A, B);
23 {A. B, AB).

1=3

3.1 {AH{BHCH

32 {A, BHC};

33 (A, B, C, AB, AC, BC, ABC);

3.4 {A, B}{C, ABC};

35 (A, B C),

3.6 (A, B,C ABC),

3.7 {A, B, C};

3.8 {{A, B}, {C, ABC}};

39 {A, B, C, ABC};

3.10 {A, B, C, AB, AC, BC, ABC).

1=4

4.1 {A{BHCHD}

42 {A BH{CHD},

43 ([A, B],[C, ABC], [D, ABD], [AC, BC],
[AD, BD] [CD, ABCD]), [ACD, BCD));

4.4 {A, B}{C, D}{AC, BD};

4.5 {A}B, CH{D, BCD};

4.6 {A, BH{C, D};

47 {B, AB}{C, ACH{D, AD);

48 {A¥B, C, D);

49 (/A, B/, /C, ABC/, /D, ABD/, ] ACD,
BCDY/);

4.10 {A, B, C}{D};

4.11 {{A, B}, {CA, CB}}{D, CD};

4.12 {[A, B}, [C, D]};

4.13 {{B, AB}, {C, AC}}{D, AD};

4.14 (A, B, C, D);

4.15 (C, A, CA){(B, C, ABC), (BD, BCD,
ABCD)};

4.16 {{A, B}, {C, D}};

417 ({A, B}, {C, ABC}, {D, ABD}, {AC, BC},
{AD, BD}, {CD, ABCD}, {ACD, BCD}):

4.18 {A, B, AB}{C, D};

4.19 {A, B, C, ABC}{D};

4.20 {{A, B}, {C, ABC}}{{D, ABD}, {ACD,
BCD}},

4.21 ({A, AD}, {B, BD}, {C, CD});

422 {A, B, C, D};

4.23 ({A, B}, {C, ABC}}{{D, ABD}, {ACD,
BCD});

4.24 {{B, AB}, {C, AC}, {D, AD}}:

4.25 {{{A, B}, {C, ABC}}, {{D, ABD}, {ACD,
BCD}}};

4.26 {A, B, C, ABCY{D, ABD, ACD, BCD};

427 {{A, B}, {C, D}, {AC, BD}};

4.28 {{A, B}, {C, ABC}, {D, ABD}, {ACD,
BCD}};

4.29 {A, B, C, D, ABC, ABD, ACD, BCD):

430 {A, B, C, D, AB, AC, AD, BC, BD, CD,
ABC, ABD, ACD, BCD, ABCD}.

there, round braces ( ) denote cyclic permutation of
the enclosed elements, square braces [ ] denote
simultaneous commutation of elements; the elements
between // remain fixed in their places.

Definition 2: Two or more Z or M groups belong
to a family if and only if they are derived from the
same symmetry group G.

Theorem 3: Two M groups G’ and G" of M™ type
belonging to the same family are equal if and only if
there is a permutation of the anti-identities ¢, . .
e,, transforming AC(G") into AC(G").

In addition, every AC(G) completely defines the
series M,,(G), where M,,,(G) denotes the number of
M groups of M™ type derived from G, for m fixed
(1=m=1). Of course, M,(G)= N,(G).

To find the series M,, corresponding to all
aforementioned  nonisomorphic  antisymmetric
characteristics for 1 <1=<4, we first need to find all
nonisomorphic systems of independent anti-identities
e, and their products for 2=m =1, ie. the systems
from which every anti-identity can be obtained as
independent by multiplying the suitably chosen ele-
ments of the system. For m =2, [ =2 there are two
such systems:

(1) el, e2;
(2) ey, ee,.

L)

For =3 and m =2 there are six such systems:
(1) E, e, eey;

(2) E e, e;

(3) e, e, e,

(4) e, e, eey;

(5) e, e, ee;

(6) e, ee,, ee,.

For I =3 and m =3 there are seven such systems:
(1) ey, e, e;;

(2) e, e, e;;

(3) eie;, eyes, e3;

(4) eje,, ere5, €35

(5) ejezes, e, €55

(6) eeres, eye;, €35

(7)  eeze;, 63, eye5.

For I =4 and m =2 there are 13 such systems:
(1) E, E, e, e;

(2) E e,e, e

(3) e, e, e, e;

(4) €, €, €, €

(5) E,E e, eey;

(6) E, e,e,e.e;

(7) e, e, ee, ee;
(8) e, e, e, ee;

(9) E, e, e, €6
(10) ey, e;, e 65, €125}
(11) ey, ey, e, e,e;;
(12) E, ey, e ey, ey}
(13) ey, e,e,, €65, €,6,.



For I=4, m =3 there are 33 such systems:

(1) E, ey, e, ee;

(2) E, eje;, eyes;

(3) E e, ee,, €,6,€3;

(4) e, e, ee,, ee;

(5) €, €3, €,6;, 6,66y,
(6) e, e e, ere;, e,e5e;;
(7) E, e, e, € 6653

(8) E, e, ee,, e e,

(9) E, eye;, e e;, e 6,655
(10) ey, e, €3, €,6;;

(11) e, e,, e,, e,e3;

(12) e, e, e, €363,

(13) ey, e, e, e eze3;

(14) e, e, ee3, eye5;

(15) ey, e,, eje;, ee;;

(16) ey, e;, e e;, e,e,63;
(17) ey, e, e,e;, eye3;

(18) ey, e, €16y, €,656;;
(19) eye,, eje5, e,e;5, € 6505
(20) ey, e,e,, e e5, €63,
(21) ey, eje;, €€y, €63,
(22) ey, eie,, e6,, €63,
(23) e, ejeq, ee,, e e5es;
(24) ey, e e, e e5, e e85,
(25) e, eie,, e 66,5, € 6565,
(26) e, e,e,, eye5, €65,
(27) e, e,, €3, €3,

(28) ey, e, e,656;, €,0,e;;
(29) ey, e, eje,, €65,

(30) eye,, eje;, e 6565, €,6,€3,
(31) E, e, e,, e3;

(32) ey, ey, e, e,e56;;

(33) ejey, eye;, €65, €065,

For 1 =4, m =4 there are 51 such systems:

(1) e, e, 6,6,

(2) e, e, 6,66,

(3) e, e, e, e e,
(4) e, e, e,ee05e,;
(5) e, e, ees, e e,
(6) e, e, 656,66,
(7) e, ey, 606, ee,;
(8) e, e, e6,eee,;
(9) e, e, 606,660,
(10) e, e,, €163, e;e3€4;
(11) ey, e, €165, €,e,63€4;
(12) ey, e,, e3e4, €,€563;
(13) ey, ey, 0563, €684,
(14) ey, ey, €,656;, €,6384;
(15) e, ey, €,6565, €,656584;
(16) ey, eie,y, €163, €64,
(17) ey, eiey, e €5, ese4;
(18) ey, e,e,, €,65, €,€5€4;
(19) e, e e, €165, €3638,;
(20) ey, e1e,, €63, €,€565€4;
(21) ey, e1e,, €365, €84}
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(22) ey, eje,, €563, €364

(23) e, e\e;, €65, € €56,

(24) ey, eje,, eye5, €, e3¢,

(25) ey, eie,, €65, €105e,;

(26) e, e\e,, eye5, e,e,638,;

(27) e, ey, €504, 10635

(28) e,,e.e5, €,0565, €154,

(29) e, e e, €1e563, e, 658

(30) ey, ere;, €1e63, €584,

(31) e, e1e,, e,e5e5, e,e363¢4;
(32) ey, €163, €,e5e4, e384,

(33) ey, e, €,05e4, €,0,056,;
(34) ey, e\e565, €,65e4, €058,
(35) e, e\eze5, €,65e4, € 6,636,
(36) eiey, €165, €164, €503,

(37) eje;, €163, €14, €038,

(38) ee,, e,e5, ese4, €,6563;

(39) ee;, e,e5, eye4, €, €364,

(40) ee;, e,e5, e,e5e5, €604
(41) eey, €165, € 0505, €;65e4;
(42) eiey, €165, €,6565, €,€563€,;
(43) ejey, €163, € 0504, €,6,6504;
(44) e e;, e,e;5, eye5e4, )06,
(45) eie,, eye4, €,0563, €,€38,;
(46) e, eze;, eye4, ey0504;

(47) eje,, e,e5e3, e,6,584, €656,
(48) ejey, e,ee5, e,6584, €,0,05¢,;
(49) e eye;, €,05¢4, €384, €,€,€3€,4;
(50) ejezes, €166y, €,6384, €050,
(51) e, eye5, eye4, €,6565€,.

A further procedure is illustrated by derivation of
the M groups for m=2, | =2. The generators A, B
in the maximal AC 2.1 are replaced by the elements
from the corresponding system:

21 {A}B}
{e.}{es} (1);
{e-He} (1);
{e;}{e e} (2);
{eie; e} (3).

From this, we have three M groups derived from the
maximal AC 2.1. From each of them, by permutation
of the anti-identities, we obtain two Z groups. Hence,
N»(2.1) = 2M,(2.1). The generators A, B in other anti-
symmetric characteristics are then replaced by the
anti-identities and their products from the three M
groups corresponding to AC 2.1. From AC 2.2 we
obtain two M groups:

2.2 {AYB}
{ei, e} (1);
{e,, e er} (2).

By permutation of the anti-identities e, and e,, the
first AC is transformed into itself, giving only one Z
group, and the other gives two Z groups. Hence,
M,(2.2) =2, N,(2.2) =1x2+1x1=23. With the same
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substitution, we obtain from the AC 2.3 only one M
group:
23 {A, B, C}

{ei, e, e.6;} (1),

By permutation of the anti-identities e, and e,, this
AC s transformed into itself, giving only one Z group.
Hence, M,(2.3) = N,(2.3) =1. As a result, we obtain
the table below of the numbers N,, and M,, for
all antisymmetric characteristics formed by [=2
generators:

NN Ny, M, M,
2.1 36 303
2.2 2 3 2 2
23 11 11

and the combinatorial relationships connecting the
corresponding numbers N, and M,, showing that all
Z groups can be obtained from the corresponding M
groups by permuting the anti-identities:

N,(2.1)=3x2=6;
Ny(22)=1x2+1x1=3;
Ny(23)=1x1=1.

All the combinatorial relations connecting the num-
bers M,, and N,, are also the double control for the
numbers N, obtained in the work by Jablan (1990).

The same procedure is realized for /=3 and I =4,
m=1 As a result we obtain the table below of the
numbers N,, and M,, for all antisymmetric charac-
teristics formed by /=3 generators:

N N, Ny, M M, M,
3.1 7 42 168 7 21 28
32 5 24 84 5 13 16
33 4 24 96 4 12 16
34 4 15 42 4 9 10
3.5 3 14 56 3 7 10
3.6 3 12 42 3 7 8
3.7 3 10 28 3 6 7
3.8 3 9 21 3 6 6
39 2 4 7 2 3 3
3.10 1 1 1 1 1 1

and the combinatorial relationships connecting the
corresponding numbers N,, and M,,:

N,(3.1) =21x2=42;
N;(3.1) =28 x 6 =168;
Ny(3.2)=11x2+2x1=24;
N3(3.2) = 12x6+4x3=84;
N,(33)=12x2=24;
N3(3.3)=16x6=96;
Ny(34)=6x2+3x1=15;
N;(3.4)=4x6+6x3=42;
N,(3.5)=7x2=14;
N3(3.5)=9x6+1x2=>56;
Ny(3.6)=5%x2+2x1=12;
N;(3.6)=6x6+2x3=42;
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N,(3.7)=4%x2+2x1=10;
N3(3.7)=3x6+3x3+1x1=28;
N,(3.8)=3x2+3x1=09;
N;(3.8)=1x6+5%x3=21;
N,(39)=1x2+2x1=4;
N;(39)=2x3+1x1=7,
N,(3.10)=1x1=1;
N;(3.10)=1x1=1.

For I =4 we have:

N, N, Ny N, M M, M, M,
4.1 15 210 2520 20160 15 105 420 840
4.2 11 126 1344 10080 11 65 236 444
43 9 120 1440 11520 9 60 240 480
4.4 9 108 1260 10080 9 57 216 426
4.5 9 84 756 5040 9 45 144 282
4.6 8 75 714 5040 8 41 134 237
4.7 8 63 462 2520 8 35 98 147
4.8 7 74 840 6720 7 37 142 284
4.9 7 66 672 5040 7 35 120 222
4.10 7 58 504 3360 7 31 97 164
4.11 7 54 420 2520 7 31 88 138
4.12 6 57 630 5040 6 33 114 213
4.13 6 39 252 1260 6 23 58 81
4.14 5 54 630 5040 S 29 108 214
4.15 5 44 448 3360 S5 23 81 140
4.16 5 39 357 2520 S 23 70 122
4.17 5 36 264 1440 5 21 80 102
4.18 5 34 26 1680 5 20 56 90
4.19 5 28 168 840 5 16 39 55
4.20 5 27 147 630 5 17 38 47
4.21 4 23 154 840 4 13 34 51
4.22 4 22 147 840 4 13 33 51
4.23 4 21 126 630 4 13 28 41
424 4 19 98 420 4 12 26 33
425 4 18 84 315 4 12 24 28
4.26 4 16 63 210 4 10 19 22
427 3 21 210 1680 3 14 42 77
4.28 3 10 35 105 3 7 12 13
4.29 2 4 8 15 2 3 4 4
4.30 11 1 1 11 1 1

The combinatorial relationships connecting the num-
bers N,, and M,, for [ =4 can be established in the
same way as before.

The use of the results obtained for calculating the
numbers of Z groups N,,, and M groups M,, for some
well known categories of symmetry groups is illus-
trated by the symmetry groups of friezes G,,. There
are seven symmetry groups of friezes, given by their
crystallographic symbol, generators, antisymmetry
characteristic and the number of equivalence classes
according to the relation of AC isomorphism (Jablan,
1990):

pl11  {b} {b} 1.1
pb11  {b} {b} 1.1
pmll {bm}  {b{m} 2.1
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pbm2  {m, 2} {m}{2,} 2.1
pim1  {b, m,} {m,, Emy} 2.2
p112  {b 2z} {2,,2,b} 2.2
pmm2 {b,m,2,} {m}{2,m,2,mb} 3.2

where translations and glide reflections are denoted
by b and b respectively, reflections parallel to the x
and y-axes are denoted by m, and m, respectively
and half-turns are denoted by 2,.

For I=1 we have the 17 well known black-white
symmetry groups of friezes. For I =2, the M groups
derived are distributed into families and are given by
their antisymmetric characteristics and extended
group/subgroup symbols.

pmll (1) {e;Hea}
(2) {eHe,er}
(3) {eie;H{ey}
pbm2 (1) {e,f{ey}
(2) {eHee}
(3) {eje;{ey}
piml (1) A{ey, e}
(2) {eye;, €}

pm11/(pm11, p111)/p111
pm11/(pb11, p111)/p111
pm11/(pb11, pm11)/p111
pbm2/(p1m1, p112)/p111
pbm2/(pb11, p112)/p111
pbm2/(pb11, pim1)/piii
pim1/(plml, plml1)/piiil
plml/(pimi, p111)/piil

pl12 (1) {e, ey} p112/(p112, p112)/p111
(2) {ee;, €} pl112/(p112, p111)/p111
pmm?2 (1) {EHe,, e} pmm2/(pmm2, pmm?2)/pm11

(2) {eje;H{e, e}
(3) {eHE e}

(4) {EHe,, e e}
(5) {e/H{E, e e;}
(6) {e;e;H{E, ¢}
(7) {eHe,, e}
(8) {ei}ey, &}

(9) {eHei, ee}
(10) {e,e;He,, €}
(11) {e;Hey, e,65}
(12) {e,}{e, e, €,65}
(13) {e,e;}{e,, e ;)

pmm2/(pbm?2, ppm2)/pb11
pmm?2/(pmm2, pim1)/plmi
pmm2/(pmm2, pm11)/pm11
pmm?2/(pmm2, pbm2)/p1mi
pmm2/(pbm2, pim1)/pim1
pmm2/(pmm?2, pbm2)/p112
pmm2/(plml, pm11)/p111
pmm2/(pmm2, p112)/p112
pmm2/(plml, p112)/p111
pmm2/(pbm2, pm11)/pb11
pmm2/(p112, pm11)/p111
pmm2/(pbm2, p112)/p112

By permutation of the anti-identities from the first
group of the third and fourth family and from the
first two groups of the fifth family, we obtain one Z
group and from each of the other groups we obtain
two Z groups. Hence, M,(G,)=23, NXG,)=
4x2+19%x1=27.

In the same way, for /=3 we obtain from the
generating symmetry group pmm2 16 M groups. By
permutations of anti-identities from each of the four
groups

(1) {e;Hez, 5}

(2) {eHe,e,, e 63}

(3) {ere.e3He, €}

(4) {ejee5}{e,e5, €63}

pmm?2/(pmm2 pmm2 plml)/plll
pmm?2/(pmm2, pmm2, p112)/p111
pmm2/(pbm?2, pbm2, pim1)/p111
pmm?2/(pbm2, pbm2, p112)/p111,

we obtain three Z groups and from each of the other
groups we obtain six Z groups. Hence, M;(G,,) =16,
N3(G,)=12x6+4x3=84.

Using the table of results, we can easily calculate
the numbers M,, for different categories of symmetry

137

groups, knowing only the antisymmetric characteris-
tics of the member groups. For example, in the case
of plane symmetry groups G,, antisymmetric charac-
teristics of the groups cm, pdg and p6m belong to
the equivalence class 2.1 according to the relation of
AC isomorphism, AC of the groups pg, pgg, p4 belong
to the class 2.2, AC of the group p1 belong to the
class 2.3, AC of the groups pm, pmg, cmm, pAm belong
to the class 3.2, AC of the group p2 belong to the
class 3.9 and AC of the group pmm belong to the
class 4.16. M groups cannot be derived from the
remaining plane symmetry groups p3, p31m, p3ml,
p6 for 1=2. For I=1 we have the well known 46
black-white groups, M,(G,) =94, M;(G,) =137 and
M,(G,)=122.

By permuting the anti-identities, we may obtain
from them the corresponding Z groups of M™ type
derived from plane-symmetry groups G, (Zamorzaev,
1976), where the following combinatorial relation-
ships connecting numbers M,, and N,, hold:

Ny(Gy) =73x2+21x1=167,
N3(G,) =97x6+39x3+1x1=700;
Ny(G;) =90x24+29x 12+ 1% 6+2 x 3 = 2520.

Different physical applications of Z and M groups
can be constructed according to Koptsik (1988).
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